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Longitudinal and Transverse Current
Distributions on Microstriplines and Their

Closed-Form Expression

MASANORI KOBAYASHI, MEMBER, IEEE

Abstract — Simple but accurate closed-form expressions for the normal-

ized longitudinal and transverse current distributions on microstrfplines are

derived by rising the charge conservation formula and the charge distribu-

tions calculated by the Green’s function technique. Their dependence on

both the relative permittivity of the substrate C* and the shape ratio w/11

are explained, and the results are compared with other available results. It

is confirmed by comparison with other theoretical results that tbe present

closed-form expressions are valid for an even higher frequency. The

reasonable expression for the normalized transverse current distribution is

believed to be the first.

I. INTRODUCTION

I N THE MICROSTRIPLINE shown in Fig. 1, the elec-

tromagnetic fields can be obtained by the quasi-TEM

mode analysis at low frequencies. The longitudinal current

distribution i=(x), which is the source determining IHl for

the case of the total longitudinal current 1( =

Qu(~))exp( – j~(~)z), can be approximated using the

charge distribution UO(X) on the strip of the microstripline

without substrate (c* =1) for a given total charge per unit

length Q/c &(0). We know the following approximate rela-

tion [1]:

i=(x) =c&(0)uO(x )u(j)e-~6(f)z (1)

where c&(0) denotes the effective relative permittivity at

the frequency ~ = O, ~(j) the phase constant ( = ti/u(j_),

a = 2m~), u(f) ( = UO/~~-) the phase velocity, c~ff (~)

the effective relative permittivity at the frequency ~, and UO

the velocity of light in free space. On the other hand, E can

be approximated by the electrostatic field due to the charge

distribution u(x) on the strip for a given total charge per

unit length Q. However, we can find the following result

[1]:

~(x) +eff(o)uo(x) (2)

except for the case of C* =1.

Noticing this discrepancy, Denlinger [1] used the con-

tinuity equation for the time dependence exp ( jot )

(3)
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Fig. 1. Microstrip configuration.

and derived the following expression for obtaining the

transverse current distribution on the strip:

iX(x) = – ju(sgnx)Jx{ u(x)–cJf(0)uo(x)} dxe–’~(f)’
o

(4)

where

{

–1, X<o

‘gnx= +1, X>o”

This idea is important because the accurate knowledge of

not only i=(x) but also iX(x) is useful for calculating

accurately the dispersion characteristics of the microstrip-

line by the hybrid-mode analysis.

Itoh and Mittra [2], [3] proposed the spectral-domain

analysis with powerful features. This dispersion analysis

was studied by various workers and by various methods

(see [4]-[11] and references therein). Kuester and Chang

compared these many results, found significant discrepan-

cies between them [4], and pointed out the validity of

representing the current and charge distributions (espe-

cially the edge singularities) accurately with a minimum

number of basis functions for use in various applications,

such as determining radiation or mode fields of the lines,

or frequency dispersion of the fundamental mode [5], [6].
In the spectral-domain analysis, the choice of the basis

functions is important for numerical efficiency. If the first

few basis functions appro~mate the actual unknown cur-

rent reasonably well, the necessary size of the matrix can

be held small for a given accuracy of the solution so that

computation time is to be saved [3]. These closed-form

expressions were given by Derdinger [1] and recently by

Kuester and Chang [5]. The theoretical results were shown

in [7]–[11].

In this paper, the charge distributions u(x) and Uo(x)

are calculated with a high degree of accuracy by using the
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Fig. 2. Charge distributions on microstrip without substrate. Totat
charge on the strip is Q =1. — Exact results by the Green’s function
technique IJO( x). ---- Maxwell’s distribution (5) UM(x).

Green’s function technique [13] for various cases with
C* = 2,4,8,16, and 0.1< w/h <100, and are used to CdCU-

late i,(x) and iX(x). The characteristics i=(x) versus w/h

and also iX(x ) versus C* and w/h are investigated in detail.

Using these results, accurate closed-form expressions are

given for the normalized longitudinal and transverse cur-

rent distributions. The closed-form expression of the nor-

malized transverse current distribution for the wide range

of C* and w/h is believed to be the first.

II. CHARACTERISTICS OF UO(X) VERSUS wih

The charge distributions UO(X) are the important quanti-

ties for determining the longitudinal and transverse current

distributions, iZ(x) in (1) and iX(x) in (4). The UO(X) were

calculated by the Green’s function technique [9] for the

various cases of the total charge Q = 1 on the strip in the

microstripline without substrate in Fig. 1. Fig. 2 shows the

comparison of these results rrO(x) and Maxwell’s distribu-

tion u~(x)

‘“(X)=%7”“)
We can find that the discrepancy of UO(X) and u“(x)

becomes larger as w/h becomes larger because OM(X) is

the distribution for the case without a ground plane. How-
ever, the ratio UO(0)/a~ (0) at x = o approaches a constant

value when w/h a co. This value is 7r/2 because rrO(0) ~

I/w when w/h + co. Fig. 3 shows the dependence of

uO(0)/uM(O) versus w/h. Fig. 4 shows the dependence of

IJO(X )/00(0) versus w/h to get the closed-form expression
of iz(x )/i Z(0). The results of rrO(x)/uO(0) for the cases of

w/h <0.7 cannot be distinguished from each other in Fig.
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Fig. 3. Dependence of UO(0)/uM (0) versus w/h.
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Fig. 4. Dependence of UO(x)/uO (0) ( = i, (x)/iz (0)) versus w/h.

Maxwell’s distributions o~ ( x )/oM (0) remains the same curve for all
different w/h and cannot be distinguished from UO( x)/uO (0) for

w/h <0.7.
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Fig. 5. Dependence of 2xC/ w versus w/h. 2x,/w+ 0.88512 when

w/h+ Oand2xc/w+l when w/h+cn.

4. Maxwell’s distributions O~(-X)/OM(0) remains the same

curve for all different w/h and also cannot be dis-

tinguished from the curves of UO(X)/uO(0) for the cases of

w/h <0.7 in Fig. 4. Also, it seems that the curves of

UO(X)/uO(0) are obtained by pulling down the curve of

rJM(X )/uM(0). Note the intersection point of the convex

part of the curve uO(x)/uO(0) for the arbitrary w\h and

the straight line with the gradient angle of – 45 degrees by

2xc/ w in IFig. 4. The closed-form expression of uO(x)/uO(0)

( = i,(x)/iz(0)) can be derived by pulling down the curve
of uM(x)/u~(0) with keeping u~(x )/oM(0) = 1 at x = O

until its height at x = XC equals uO(xC)/uO(0). This process

is also shown for the case w/h = 4 in Fig. 4. Fig. 5 shows

the dependence of 2xC/ w versus w/h. The closed-form

expression for iz(x )/z=(0) ( = rro(x)/uo(0)) obtained by

this process is expressed as follows:

i=(x)

()

Uo(x) =~+lo l_ w ~(xc)_l
~ ‘(X)-l (6)

i=(0) = a.(0)

where

M(x)= l//m. (7)
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Fig. 6. Comparison of normalized charge distributions 00(X)/CO@) ( =

normalized longitudinal current distributions i= ( x )/iz (0)). --- Kuester

and Chang [5] (8). ---- Present expression (6). — Exact result by the
Green’s function technique.

TABLE I

PERCENTAGE ERROR OF Tlvo CLOSED-FORM EXPRESSIONS OF

co ( X)/UO (0) ( = i, ( x)/i2 (0)) WITH RESPECT TO THE EXACT
RSSULTS CALCULATED BY THE GREEN’S FUNCTION TECHNIQUE

0.7 1 2 4 7 10
KC] ~ ~cl ~ ~cl ~ ~r]K ~clK ~clK

0.330 0.2 0.1 0.4 (1.2 1.0 0.7 0.9 1.2 -0.4 1.0 -0.81 0.8

0.4 [2.11 1.31 2.1[ 2.4[-0.4[ 2.31 -l.5~

KC : Kuester and Chang[5] K : “resent express ion(6 )

This closed-form expression satisfies the edge singularity

[12] which requires that i,(x) approaches the edge w/2 of

a strip with the singularity lx–(w/2)1–l’2. Fig. 6 shows

the comparison of the present expression (formula K)

shown in (6) and the expression (formula KC) by Kuester

and Chang [5]

%(x)_
~osh2(~)-1

O.(0)

Icosh’(%bsh’(%) “ ‘8)

Table I shows the percentage error of these two formulas

with respect to the exact results calculated by the Green’s

function technique [13]. We can find that formula K is the

more closed-form for w/h <7 and formula KC for w/h >

7. Fig. 7 shows the percentage error of the total charge by
formula K with respect to the exact total charge. Its

percentage error is less than – 0.4 percent. The high degree

of accuracy of formula K can be understood also by taking

account of its agreement with the exact value at x = xc.

The theoretical results for i=(x) were shown in the

literature, for example, for the cases off =1 GHz in [7, fig.

4] and [9, fig. 6], f =10 GHz in [8, fig. 6], f =12 GHz in

[11, fig. 5], and McO (kO = 2m/Xo) = 0.01,0.13 in [10, figs.

13-15]. Comparing the results of the two formulas (K, KC)

with these theoretical results, we can know that two for-

mulas for i= ( x )/i, (0) are valid for even the higher

frequency.
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Fig. 7. Percentage error of the totaf charge by the present expression

with respect to the exact total charge. QT = exact total charge by the

Green’s function technique, Q = totaf charge by the present expression
(6).
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Fig. 8. Comparison of normalized longitudinal current distributions

iX ( x)/iX ( .xm) for w/h =1. ---- Present expression (9) with a =1.6. –-–
Derdinger [1] (12). — Exact result by the Green’s function technique

(not distinguished the curves for the cases of <“= 2,4,8,16).

III. CHARACTERISTICS OF iX(x) VERSUS @ AND w/lz

The current distribution iX(x)/iX(xm) normalized by

iX(xm) at the peak point x = x~ can be calculated by

substituting only the charge distributions UO(X) and u(x)

and the effective relative permittivity c~ff (0) at the frequency

f = O into (4). Here, u(x) denotes the charge distribution
on the strip for the case with substrate for a total charge

per unit length on the strip Q. On the other hand, UO(X)

denotes the charge distribution on the strip for the case

without substrate for a total charge Q/~&(0). The quanti-

ties UO(X), u(x), and c&(0) were obtained by the Green’s

function technique [13].

Fig. 8 shows the results of iX(x)/iX(xm) for the cases of

w/h = 1 and 6* = 2,4,8,16 by the solid lines. For the case

of w/h = 40, the results are similarly shown by the solid

lines in Fig. 9. We cannot distinguish the curves for the

cases of different C* in Figs. 8 and 9, and therefore can

conclude that the dependence of iX(x )/i X(xm) versus C* is

extremely small. This property is held for the cases of other

w/h. This seems to be due to the small dependence of the

effective filling fraction q versus c“ [13, table I and fig. 8].

On the other hand, the dependence of iX(x)/iX(xm)

versus w/h can be explained by the shift of the positions

(2x~/ w) at those peak points. Fig. 10 shows the depen-

dence of 2x~/ w versus w/h. The curve is obtained by

taking the arithmetic mean of the results for the cases of

C* = 2,4,8,16. The percentage error of its value for the case

of arbitrary E* versus the arithmetic mean value (Fig. 10)

was less than +0.4 percent. It is worthwhile to say that the
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Fig. 9. Comparison of normalized longitudinal current distributions
ix ( x)/iX ( x~ ) for w/h = 40. ---- present expression (9) with a = 1.5.
—-— Denlinger [1] (12). — Exact result by the Green’s function

technique (not distinguished the curves for the cases of c“ = 2,4, 8,16).

y >710 &’J,O 0,,1, 0.702~E 0.696
mJ_W-JJ86 0“8’4

m 0.703 0.696 0.711

0.51 G
0.1 0.5 1 5 10

‘/h 50
100

Fig. 10. Positions (2 Xm / w ) at the peak points of longitudinal current

distributions versus w/lr.

minimum part of this curve (Fig. 10) becomes nearly the

inflection point of the curve of q versus w/h obtained by

drawing the results shown in [13, table I].

We can derive the closed-form expression for iX(x)/

iX ( x ~) to approximate the calculated results as follows:

1-()
a

1– 1–; ,
m

~=

()

2

ix(xm) 1–*,
——
2 ““

iX(–x)=–iX(x)

where

{

1.6, ;<7

a=
1.5, 7<;.

(10)

(11)

This closed-form expression satisfies the edge singularity

[12] which requires that iX(x) behave like lx – (w/2)1’/2

near the edge w/2 of a strip. Figs. 8 and 9 also show the

comparison of the present expression (formula K) and the

expression (formula D) by Denlinger [1, the correction is

needed by 0.7 ~ 0.8 in (6)]

{-

iX( x ) ‘in o~~w’ OS XSO.8;

0.8W = _

()

’27X . (12)

iX —
2 Cos 0.2W ‘

0,8~<xG;

In the spectral-domain analysis [2], [3], the phase con-

stant J3(~ ) can be obtained from the determinant for the

0.1
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Fig. 11. Dependence of ix (x~ ) u(~)/(iz (0) u) obtained by the Ck-een’s
function techniaue versus C* and w/h. The results are valid for the
low-frequency r~gion (~ < ~ /10 [14]j,

unknown amplitudes of i=(x) and iX(x) in the integral

simultaneous equations. Therefore, its analysis needs the

simple but accurate closed-form expressions of iz(x )/iZ(0)

ad iX(x)/iX(xm) to save computation time. The present
expressions (6) and (9) satisfy the edge singularities [12]

and are useful for its analysis with a minimum number of

basis functions.

Fig. 11 shows the dependence of iX(xm)u(f)/(iz(0)~)

versus c* and w/h. The results are valid for the low-

frequency region where the quasi-TEM approximation can

be applied. The expressions (1) and (4) are valid in this

frequency region. For the rnicrostripline, the quasi-TEM

mode is dominant until the frequency ~ = fi /10 [14], where

j denotes the inflection frequency of the dispersion curve

of l/~t ( f ) . Therefore, within this frequency range, the

ratio iX(xrn)/iz(0) can be found with the help of Fig. “11.

However, the present closed-form expressions iz(x)/i=(0)

and iX(x)/iX(xm) are believed to be valid for even the

higher frequency although no exact results can be refer-

enced in the literature. It is worthwhile to say that the

present expression of iX(x)/iX(xm) (2xm/w = about 0.702

for w/h = 0.96 and 0.74 for w/h= 14.3 in Fig. 10) has

good agreement with the theoretical results by Fujlci et al.

[7, 2x~/w = about 0.7 for w/h= 0.96 in fig. 4] for the

case of C* = 9.7, h =1.27 mm, w =1.219 mm, ~ = 1 lGHz,

and by Jansen [11, 2xM/w = about 0.72 for w/h =14.3 in

fig. 5] for the case of C*= 9.7, h = 0.64 mm, w = 9.15 mm,

f =12 GHz.

IV. CONCLUSION

It has been shown that the normalized longitudinal and

transverse current distributions of the microstriplines

i.(x )/i,(O) and ix(x)/ iX(x~) are approximated quite well
by (6) and (9) over the wide range of t“ and w/h. The

small dependence of iX(x)/iX(xm) versus C* has been
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explained by the small dependence of q versus c*. The

reasonable expression for the normalized transverse cur-

rent distribution is believed to be the first. The present

closed-form expressions of i,(x)/i=(0) and iX(x)/iX(x~)

are naturally valid for the low-frequency range ( ~s ~ /10)

where the quasi-TEM approximation can be applied. How-

ever, they are believed to be valid for even the higher

frequency. This has been confirmed by comparing them

with the other theoretical results shown for the higher

frequency.

Using these current distributions, the dispersion char-

acteristics of the microstriplines will be performed by using

the spectral-domain analysis in the near future. Also, these

closed-form expressions will be useful in many applications

as shown by Kuester and Chang [5], [6].
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