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Longitudinal and Transverse Current
Distributions on Microstriplines and Their
Closed-Form Expression

MASANORI KOBAYASHI, MEMBER, IEEE

Abstract —Simple but accurate closed-form expressions for the normal-
ized longitudinal and transverse current distributions on microstriplines are
derived by using the charge conservation formula and the charge distribu-
tions calculated by the Green’s function technique. Their dependence on
both the relative permittivity of the substrate ¢* and the shape ratio w/h
are explained, and the results are compared with other available results. It
is confirmed by comparison with other theoretical results that the present
closed-form expressions are valid for an even higher frequency. The
reasonable expression for the normalized transverse current distribution is
believed to be the first.

I. INTRODUCTION

N THE MICROSTRIPLINE shown in Fig. 1, the elec-

tromagnetic fields can be obtained by the quasi-TEM
mode analysis at low frequencies. The longitudinal current
distribution i,(x), which is the source determining H for
the case of the total longitudinal current I(=
Qu(fyexp(— jB(f)z), can be approximated using the
charge distribution 6,(x) on the strip of the microstripline
without substrate (¢* =1) for a given total charge per unit
length Q /eX;(0). We know the following approximate rela-
tion [1]:

i,(x) = e (0)op(x)v(f)e D" 1

where €X,(0) denotes the effective relative permittivity at
the frequency f = 0, B(f) the phase constant ( = w/v(f),
w=2mf), o(f) (= vy/eks(f)) the phase velocity, eZ¢(f)
the effective relative permittivity at the frequency £, and v,
the velocity of light in free space. On the other hand, E can
be approximated by the electrostatic field due to the charge
distribution 6(x) on the strip for a given total charge per
unit length Q. However, we can find the following result
{1]:

o(x) # e (0)ay(x) (2)

except for the case of e* =1.
Noticing this discrepancy, Denlinger [1] used the con-
tinuity equation for the time dependence exp (jw?)

gé‘_ + aiz
dx 9dz

= — jwa(x)e"]ﬂ(f)z

®3)
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Fig. 1. Microstrip configuration.

and derived the following expression for obtaining the
transverse current distribution on the strip:

i(x)=— jo(sgn X)fox{o(x)—c’e'}f(o)oo(x)} dxe Bz

(4)
where

x<0
x>0

/L
sgnx = { +1,

This idea is important because the accurate knowledge of
not only i,(x) but also i ,(x) is useful for calculating
accurately the dispersion characteristics of the microstrip-
line by the hybrid-mode analysis.

Itoh and Mittra [2], [3] proposed the spectral-domain
analysis with powerful features. This dispersion analysis
was studied by various workers and by various methods
(see [4]-[11] and references therein). Kuester and Chang
compared these many results, found significant discrepan-
cies between them [4], and pointed out the validity of
representing the current and charge distributions (espe-
cially the edge singularities) accurately with a minimum
number of basis functions for use in various applications,
such as determining radiation or mode fields of the lines,
or frequency dispersion of the fundamental mode [5], [6].
In the spectral-domain analysis, the choice of the basis
functions is important for numerical efficiency. If the first
few basis functions approximate the actual unknown cur-
rent reasonably well, the necessary size of the matrix can
be held small for a given accuracy of the solution so that
computation time is to be saved [3]. These closed-form
expressions were given by Denlinger [1] and recently by
Kuester and Chang [5]. The theoretical results were shown
in [7]-[11}.

In this paper, the charge distributions o(x) and o,(x)
are calculated with a high degree of accuracy by using the
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Fig. 2. Charge distributions on microstrip without substrate. Total

charge on the strip is @ =1. Exact results by the Green’s function
technique a4(x). - Maxwell’s distribution (5) 6,,(x).

Green’s function technique [13] for various cases with
e*=2 48,16, and 0.1 < w/h <100, and are used to calcu-
late i,(x) and i,(x). The characteristics i,(x) versus w/h
and also i (x) versus €* and w/h are investigated in detail.
Using these results, accurate closed-form expressions are
given for the normalized longitudinal and transverse cur-
rent distributions. The closed-form expression of the nor-
malized transverse current distribution for the wide range
of €* and w/h is believed to be the first.

II. CHARACTERISTICS OF 6,(x) VERSUS w/h

The charge distributions o,(x) are the important quanti-
ties for determining the longitudinal and transverse current
distributions, i,(x) in (1) and i,(x) in (4). The o,(x) were
calculated by the Green’s function technique [9] for the
various cases of the total charge Q =1-on the strip in the
microstripline without substrate in Fig. 1. Fig. 2 shows the
comparison of these results 6,(x) and Maxwell’s distribu-
tion o,,(x)

2 1

o (x) = .
()

(5)

We can find that the discrepancy of oy(x) and o,,(x)
becomes larger as w/h becomes larger because 6,,(x) is
the distribution for the case without a ground plane. How-
ever, the ratio 6,(0)/0,,(0) at x = 0 approaches a constant
value when w/h — oo. This value is 7/2 because 6,(0) >
1/w when w/h — 0. Fig. 3 shows the dependence of
0,(0)/0,,(0) versus w/h. Fig. 4 shows the dependence of
0,(x)/06,(0) versus w/h to get the closed-form expression
of i,(x)/i,(0). The results of 6,(x)/06,(0) for the cases of
w/h < 0.7 cannot be distinguished from each other in Fig.
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Dependence of a;,(0)/0,,(0) versus w/h.
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Fig. 4. Dependence of 6y(x)/05(0) (=1i,(x)/i,(0)) versus w/h.
Maxwell’s distributions o,,(x)/0,,(0) remains the same curve for all

different w/h and cannot be distinguished from ay(x)/0y(0) for
w/h<0.7.
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Fig. 5. Dependence of 2x,/w versus w/h. 2x /w— 0.88512 when
w/h—0and2x,/w—1whenw/h— co.

4, Maxwell’s distributions 6,,(x)/0,,(0) remains the same
curve for all different w/h and also cannot be dis-
tinguished from the curves of oy(x)/0,(0) for the cases of
w/h<0.7 in Fig. 4. Also, it seems that the curves of
64(x)/0,(0) are obtained by pulling down the curve of
6,,(x)/0,,(0). Note the intersection point of the convex
part of the curve o,(x)/0,(0) for the arbitrary w/h and
the straight line with the gradient angle of —45 degrees by
2x,/w in Fig. 4. The closed-form expression of o,(x)/0,(0)
(=1i,(x)/i,(0)) can be derived by pulling down the curve
of 0,,(x)/0,,(0) with keeping 0,,(x)/0,,(0)=1 at x=0
until its height at x = x_ equals o,(x_)/06,(0). This process
is also shown for the case w/h =4 in Fig. 4. Fig. 5 shows
the dependence of 2x_/w versus w/h. The closed-form
expression for i,(x)/i,(0) (=0y(x)/0,(0)) obtained by
this process is expressed as follows:

i(x) _op(x) _ _
L(0) ~ o(0) 1+10[1

M(x)-1
Mx)1

2x, ) 6)

where

M(x)= 1/\/1—(2x/w)2 . (7
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Fig. 6. Comparison of normalized charge distributions a;(x)/0o(0) (=
normalized longitudinal current distributions i,(x)/i,(0)). —-— Kuester
and Chang [5] (8). ---- Present expression (6). Exact result by the
Green’s function technique.

TABLEI
PERCENTAGE ERROR OF Two CLOSED-FORM EXPRESSIONS OF
0y (x)/0,(0) ( = i,(x)/i,(0)) WITH RESPECT TO THE EXACT
RESULTS CALCULATED BY THE GREEN’S FUNCTION TECHNIQUE

Dl or 1 2 4 7 10
S\ [xe] K[ ke] k| ke] x [ ke [ kK [ke | x [ ke | x
0.330}0.2}1 o.1]o.4] o.2]1.0] 0.7} 0.9 1.2]-0.4 1.0|-0.8 0.8
n.488{0.4| o.1l0.8} o.ul2.1] 1.3] 2.1} 2.4]-0.4] 2.3}-1.5] 1.9
0.657[0.8] 0.5]1.4] 0.6]3.8] 1.9 4.3 3.8] 0.5 4.3]-2.1 3.7
n.78411 . 1{ o.4{2.0] 0.5[5.4] 1.8] 6.8 4.01 2.5 5.5(-1.2 5.4
0.875[1.4¢-0.2]2.6| 0.3]6.7] 0.9] 9.2 2.2 5.1 4,31 1.3 5.1
0.936[1.7[-0.4[3.0]-0.2[7.7]-0.7[11.0] -1.5] 7.7] -0.4] 4.1 0.8
0.973[2.0[-0.613.4]|-0.6}8.5|-2.6|22.4] -6.5] 9.6] -9.0{ 6.5| ~8.0
0.992{2.6]-0.5|4.0]-0.8]9.4f{-4.3|13.6]-12.7[11.1[-16.6] 8.4]-19.1
KC : Kuester and Chang[5] K : present expression(6 )

This closed-form expression satisfies the edge singularity
[12] which requires that i,(x) approaches the edge w/2 of
a strip with the singularity |x —(w/2)|"'/2. Fig. 6 shows
the comparison of the present expression (formula K)
shown in (6) and the expression (formula KC) by Kuester
and Chang [5]

oo(x) coshl(ﬂ)—l

%(0) ‘/cosh2 ( %) —cosh? ( %)

Table 1 shows the percentage error of these two formulas
with respect to the exact results calculated by the Green’s
function technique [13]. We can find that formula K is the
more closed-form for w/h < 7 and formula KC for w/h >
7. Fig. 7 shows the percentage error of the total charge by
formula K with respect to the exact total charge. Its
percentage error is less than — 0.4 percent. The high degree
of accuracy of formula K can be understood also by taking
account of its agreement with the exact value at x = x_.

The theoretical results for i,(x) were shown in the
literature, for example, for the cases of f =1 GHz in {7, fig.
4] and [9, fig. 6], f =10 GHz in [8, fig. 6], f =12 GHz in
[11, fig. 5], and Ak, (ko=27/Ay)=0.01,0.13 in [10, figs.
13-15). Comparing the results of the two formulas (K, KC)
with these theoretical results, we can know that two for-
mulas for i,(x)/i,(0) are valid for even the higher
frequency. ‘

(8)

[EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 9, SEPTEMBER 1985

%100 (%)

Fig. 7. Percentage error of the total charge by the present expression
with respect to the exact total charge. Q7 = exact total charge by the
Green’s function technique, Q = total charge by the present expression
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Fig. 8. Comparison of normalized longitudinal current distributions
i.(x)/i,(x,,) for w/h=1.---- Present expression (9) with a =1.6. —-—
Denlinger [1] (12). — Exact result by the Green’s function technique
(not distinguished the curves for the cases of ¢* =2,4,8,16).

III.

The current distribution i (x)/i,(x,) normalized by
i(x,) at the peak point x=x, can be calculated by
substituting only the charge distributions oy(x) and o(x)
and the effective relative permittivity e, (0) at the frequency
f =0 into (4). Here, o(x) denotes the charge distribution
on the strip for the case with substrate for a total charge
per unit length on the strip Q. On the other hand, o,(x)
denotes the charge distribution on the strip for the case
without substrate for a total charge Q /eX,(0). The quanti-
ties 0,(x), o(x), and €%;(0) were obtained by the Green’s
function technique [13].

Fig. 8 shows the results of i (x)/i,(x,,) for the cases of
w/h =1 and €*=2,4,8,16 by the solid lines. For the case
of w/h =40, the results are similarly shown by the solid
lines in Fig. 9. We cannot distinguish the curves for the
cases of different ¢* in Figs. 8 and 9, and therefore can
conclude that the dependence of 7,(x)/i (x,,) versus €* is
extremely small. This property is held for the cases of other
w/h. This seems to be due to the small dependence of the
effective filling fraction g versus €* [13, table I and fig. 8].

On the other hand, the dependence of i (x)/i (x,,)
versus w/h can be explained by the shift of the positions
(2x,,/w) at those peak points. Fig. 10 shows the depen-
dence of 2x,,/w versus w/h. The curve is obtained by
taking the arithmetic mean of the results for the cases of
e*=2,4,8,16. The percentage error of its value for the case
of arbitrary e* versus the arithmetic mean value (Fig. 10)
was less than + 0.4 percent. It is worthwhile to say that the

CHARACTERISTICS OF i (X) VERSUS €* AND w/h
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Fig. 9. Comparison of normalized longitudinal current distributions
i,(x)/i(x,,) for w/h=40. ---- Present expression (9) with a=1.5.
—-— Denlinger [1] (12). —— Exact result by the Green’s function
technique (not distinguished the curves for the cases of e* = 2,4,8,16).
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Fig. 10. Positions (2x,,/w) at the peak points of longitudinal current
distributions versus w/h.

minimum part of this curve (Fig. 10) becomes nearly the
inflection point of the curve of g versus w/h obtained by
drawing the results shown in [13, table I].

We can derive the closed-form expression for i (x)/
i, (x,,) to approximate the calculated results as follows:

i (=x)=—i(x)

where

(10)

1.6,

%<7

(11)
1.5,

w
7< W
This closed-form expression satisfies the edge singularity
[12] which requires that i (x) behave like |x —(w/2)[}/?
near the edge w/2 of a strip. Figs. 8 and 9 also show the
comparison of the present expression (formula K) and the
expression (formula D) by Denlinger [1, the correction is
needed by 0.7 — 0.8 in (6))}

. mx w

i(x) _)"os,  0<x<083 1)
; (98w cos —o— 08% <x<2
x\ 7 0.2w 2 2

In the spectral-domain analysis [2}, [3], the phase con-
stant B(f) can be obtained from the determinant for the
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Fig. 11. Dependence of i (x,,)v(f)/(i,(0)w) obtained by the Green’s
function technique versus e¢* and w/h. The results are valid for the
low-frequency region (f < f, /10 [14]).

unknown amplitudes of i,(x) and i, (x) in the integral
simultaneous equations. Therefore, its analysis needs the
simple but accurate closed-form expressions of i,(x)/i,(0)
and i (x)/i(x,) to save computation time. The present
expressions (6) and (9) satisfy the edge singularities [12]
and are useful for its analysis with a minimum number of
basis functions.

Fig. 11 shows the dependence of i, (x,)v(f)/(i,(0)w)
versus €* and w/h. The results are valid for the low-
frequency region where the quasi-TEM approximation can
be applied. The expressions (1) and (4) are valid in this
frequency region. For the microstripline, the quasi-TEM
mode is dominant until the frequency f = f; /10 [14], where
f; denotes the inflection frequency of the dispersion curve
of 1/ \/eT_eﬁ (f) . Therefore, within this frequency range, the
ratio i (x,,)/i,(0) can be found with the help of Fig. 11.

However, the present closed-form expressions i ,(x)/i,(0)
and i,(x)/i.(x,) are believed to be valid for even the
higher frequency although no exact results can be refer-
enced in the literature. It is worthwhile to say that the
present expression of i (x)/i.(x,,) (2x,,/w = about 0.702
for w/h=0.96 and 0.74 for w/h=14.3 in Fig. 10) has
good agreement with the theoretical results by Fujiki ez al.
[7, 2x,,/w=about 0.7 for w/h=0.96 in fig. 4] for the
case of e¥=9.7, h=1.27 mm, w=1.219 mm, f=1 GHz,
and by Jansen [11, 2x,, /w = about 0.72 for w/h =14.3 in
fig. 5] for the case of ¢*=9.7, h =0.64 mm, w=9.15 mm,
f =12 GHz.

IV. ConNcrLusioNn

It has been shown that the normalized longitudinal and
transverse current distributions of the microstriplines
i,(x)/i,(0) and i (x)/i,(x,) are approximated quite well
by (6) and (9) over the wide range of €* and w/h. The
small dependence of i .(x)/i.(x,) versus ¢* has been
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explained by the small dependence of ¢ versus e*. The
reasonable expression for the normalized transverse cur-
rent distribution is believed to be the first. The present
closed-form expressions of i,(x)/i,(0) and i (x)/i (x,,)
are naturally valid for the low-frequency range ( f < f; /10)
where the quasi-TEM approximation can be applied. How-
ever, they are believed to be valid for even the higher
frequency. This has been confirmed by comparing them
with the other theoretical results shown for the higher
frequency.

Using these current distributions, the dispersion char-
acteristics of the microstriplines will be performed by using
the spectral-domain analysis in the near future. Also, these
closed-form expressions will be useful in many applications
as shown by Kuester and Chang [5], [6].
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